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Abstract
Analytic solutions to the superfocusing modes of surface plasmon polaritons
in a conical geometry are theoretically studied using an ingenious method
called the quasi-separation of variables. This method can be used to look for
fundamental solutions to the wave equation for a field that must satisfy boundary
conditions at all points on the continuous surface of tapered geometries. The
set of differential equations exclusively separated from the wave equation can
be consistently solved in combination with perturbation methods. This paper
presents the zeroth-order perturbation solution of conical superfocusing modes
with azimuthal symmetry and graphically represents them in electric field-line
patterns.

PACS numbers: 02.30.Mv, 41.20.Gz, 78.20.−e, 78.20.Bh

1. Introduction

Superfocusing of surface plasmon polaritons (SPPs) propagating toward tapered metal tips has
recently become the focus of attention as a possible way of delivering electromagnetic radiation
to the nanoscale and thereby causing an extraordinary enhancement of the electromagnetic
field in nano-optics [1–3]. Superfocusing SPPs are a compound concept whereby propagating
SPPs are gradually slowed down and stopped at the tapered tip where they accumulate as
localized SPPs. The study of superfocusing SPPs in tapered metal structures is essentially
equivalent to studying localized SPPs at tapered metal tips, which play a critical role in nano-
optical applications such as high-resolution near-field optical microscopy [4], nanolithography
[5, 6] and giant surface-enhanced Raman scattering [7–11].
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In theoretical investigations on superfocusing SPPs [1, 12–16], the cone is a basic
geometry [1, 12, 13] because the spherical coordinates system is easily applied and empirical
correspondences are found in experimental scanning probe tips. Although the exact solution
is still unknown, adiabatic approximate solutions [1, 17, 18] based on SPPs in a cylindrical
geometry [19] have been used in numerous cases [1, 12, 13, 20, 21]. In conical geometry,
numerical methods such as the finite-difference time-domain (FDTD) method [22] become
increasingly ineffective in the superfocusing regions where the wave numbers of conical SPPs
become larger closer to the apex of the cone. Theoretical improvements are needed in order
to deal with superfocusing of SPPs.

Recently, Babadjanyan et al [12] gave an analytic solution to the superfocusing problem
of conical SPPs at the apex point. In the spherical coordinates system, they applied the
separation of variables approach to the wave equation for a magnetic field at the apex point
of the cone. While it is possible to use the separation of variables for the solutions around
the apex, it is very difficult to extend such solutions to the full cone. Indeed, their solution
is restricted to the apex of the cone simply because it satisfies boundary conditions at only
the apex. The difficulty lies in an uncountably infinite number of boundary conditions at
all points on the continuous surface of the cone from the apex to an infinite distance from
it, which cannot be satisfied by taking a linear combination of a countably infinite number
of fundamental solutions based on the ordinary separation of variables; thus, it is necessary
to find a new analytic method for solving the partial differential equations (PDEs) that will
allow us to readily extend their analytic solution to the full cone. Generalized methods of the
separation of variables [23–25] are worth considering.

The present paper proposes a new analytic method based on the quasi-separation of
variables; it involves searching for fundamental solutions that each satisfy the boundary
conditions on the continuous surface of tapered geometries, consequently making approximate
analytic solutions to superfocusing SPPs more accurate than ever. Our solution in conical
geometry includes the previous one by Babadjanyan et al [12] (see appendix A) and is a
significant step toward findings exact solutions for the superfocusing modes of conical SPPs.
In the method, solutions to the PDE in the superfocusing problem are assumed to be a
product of functions depending on a common argument. As a result, it becomes possible
to treat incomplete separated variables such as when the separation quantities are not fixed
constants and depend on the common argument. For the superfocusing modes of conical
SPPs in spherical coordinates, the magnetic field has only the azimuthal component, which is
assumed to be multiplicatively separated into radial and polar angle functions depending on
radius and both polar angle and radius, respectively. This assumption naturally leads to an
incomplete separation of variables in such a manner that a separation quantity as a function
of the ‘radius’ common argument is introduced in each of the metallic and dielectric regions
to make the PDE exclusively separated into two differential equations: radial and extended
polar angle equations. The radial equation becomes an ordinary differential equation (ODE)
with respect to radius, which is considered for asymptotic boundary conditions at infinite
and infinitesimal distances from the apex of the cone. The asymptotic behavior at infinity is
treated as Sommerfeld’s radiation condition [26] in which the wave number is set equal to that
of the SPPs in planar geometry. According to both the asymptotic boundary conditions, the
separation quantities that are differently expressed in metallic and dielectric regions become
mathematically connected by a unified separation quantity independent of those regions. In
contrast, the extended polar angle equation becomes a PDE with respect to two coordinates of
polar angle and radius, which can be approximately solved using perturbation methods when
it is regarded as an inhomogeneous ODE with respect to the polar angle. The inhomogeneous
term is treated as a perturbation when the associated homogeneous ODE can be exactly solved.
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Boundary conditions at the cone surface determine the unified separation quantity depending
on the common argument of radius. A consistent theory of superfocusing SPPs based on
the quasi-separation of variables in combination with perturbation methods is possible. In
the present paper, the superfocusing modes of conical SPPs are considered in zeroth-order
perturbation theory.

When the magnetic field has only the azimuthal component in spherical coordinates, it is
easy to graphically represent the electric field-line patterns it induces. This graphical technique
helps us to understand the analytic solutions of superfocusing SPPs visually and intuitively.

Finally, it is instructive to point out that the quasi-separation of variables is used in
the Born–Oppenheimer adiabatic approximation [27, 28] for dividing the molecular wave
function of quantum mechanics into two parts: the free nuclear motion described by a set
of slow variables and the electric motion bound to the nuclei described by a set of fast
variables together with a set of slow variables treated as fixed nuclear positions. In the
Born–Oppenheimer approximation, the quasi-separation of variables is used to divide the
total molecular system, as a consequence of the large ratio of nuclear mass to electron mass,
into slow and fast subsystems of Hamiltonians that can be solved directly. This adiabatic
concept in quantum theory cannot be applied in itself to the quasi-separation of variables in
electromagnetic theory, which is introduced to express the strong coupling of superfocusing
SPPs between the radius and polar angle in spherical coordinates without any specific condition
such as the high ratio between nuclear and electric masses. For superfocusing problems in
electromagnetic theory, we can exactly separate the original PDE of the Helmholtz wave
equation into two sets of differential equations that can be solved mathematically by assuming
just a quasi-separation of variables solution. When doing so, we do not need any knowledge
of the Born–Oppenheimer adiabatic approximation, which is exactly the physical condition
in quantum mechanics for allowing us to approximately separate a complex system into
simpler subsystems by the quasi-separation of variables. Mathematical treatments due to the
method are, however, fairly similar between quantum and electromagnetic theories, so that
there exits a physical analogy indicated by the quasi-separation of variables: the complex
system is separated into slow and fast subsystems. In superfocusing of conical SPPs, the
radius and polar angle correspond to slow and fast variables, respectively; the radial and
extended polar angle functions correspond to slow and fast subsystems, respectively. It
may be of interest to note that the radial function of the slow subsystem describes the
superfocusing effect in which the phase velocity becomes slower to zero as the conical tip is
approached.

2. Quasi-separation of variables approach to the wave equation for a magnetic field

We employ a spherical system of coordinates (r, θ , ϕ) for the geometry of the conical structure
in figure 1. The apex angle of the cone is 2α. The region of polar angle 0 < θ < α is occupied
by a metallic cone with dielectric function εm while the outside of the cone is occupied by a
dielectric material with dielectric function εd . Superfocusing modes in the conical structure
are generally described as functions of spherical coordinates (r, θ , ϕ) and time t. We here
consider a simple superfocusing mode of SPPs with azimuthal symmetry [29], whose magnetic
field is directed along the ϕ-axis and depends only on r and θ [12]. The Maxwell equations
for the magnetic field H(t) (0, 0,Hϕ(r, θ, t)) are simplified [12] to the scalar wave equation
given by

1

r

∂2

∂r2
rHϕ(r, θ) +

1

r2

∂

∂θ

1

sin θ

∂

∂θ
Hϕ(r, θ) sin θ + εj

ω2

c2
Hϕ(r, θ) = 0, j = m, d (1)
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Figure 1. Geometry of a conical structure where superfocusing of SPPs occurs at a conical tip.
Conical SPP modes are obtained by solving the wave equation of the magnetic field of the azimuthal
component Hϕ in the spherical coordinates system.

Hϕ(r, θ, t) = Re[Hϕ(r, θ) e−iωt ]. (2)

Here, ω is the angular frequency of interest and c is the velocity of light in the vacuum.
In the superfocusing phenomena, the magnetic field localizes within about a half

wavelength’s distance of the cone’s surface. In spherical coordinates, this means that the
θ distribution of Hϕ(r, θ) becomes narrower with increasing radius r. In other words,
the θ distribution of Hϕ(r, θ) becomes broader as the cone’s apex is approached. This
mathematical behavior cannot be easily expressed by fundamental solutions based on the
conventional separation of variables approach, in which the magnetic field is usually written
as Hϕ(r, θ) = R(r)�(θ) on the implicit assumption that the θ distribution is invariable
against changes of r or depends on θ alone. To readily obtain solutions appropriate for
the superfocusing phenomena, let us tentatively replace �(θ) with �(θ, r) and write the
corresponding magnetic field as

Hϕ(r, θ) = R(r)�(θ, r), (3)

where �(θ, r) cannot be yet determined as a unique solution and is further assumed to be

�(α, r) = 1, (4)

which is the boundary condition at the cone surface to express �(θ, r) as the θ distribution
of Hϕ(r, θ). If our attempt succeeds, equations (3) and (4) will be justified. Substituting
equation (3) into equation (1), we get

−
(

r

R(r)

∂2

∂r2
rR(r) + εj

ω2

c2
r2

)
=

(
1

�(θ, r)

∂

∂θ

1

sin θ

∂

∂θ
�(θ, r) sin θ +

r2

�(θ, r)

∂2

∂r2
�(θ, r)

+
2r

R(r)�(θ, r)

(
∂

∂r
rR(r)

)
∂

∂r
�(θ, r)

)
, j = m, d. (5)

Equation (5) exhibits one exclusive separation of variables. The left side of equation (5)
depends on r and the right side depends on r and θ . If equation (5) is to hold for arbitrary
values of θ , each side must be equal to an invariant quantity with respect to θ or a function of
r alone. We choose

r

R(r)

∂2

∂r2
rR(r) + εj

ω2

c2
r2 = −ζj (r), j = m, d (6)
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1

�(θ, r)

∂

∂θ

1

sin θ

∂

∂θ
�(θ, r) sin θ +

r2

�(θ, r)

∂2

∂r2
�(θ, r)

+
2r

R(r)�(θ, r)

(
∂

∂r
rR(r)

)
∂

∂r
�(θ, r) = ζj (r), j = m, d. (7)

Multiplying equation (6) by R(r)/r2 and rearranging terms, we have for the radial equation
that

∂2

∂r2
R(r) +

2

r

∂

∂r
R(r) +

(
ζj (r)

r2
+ εj

ω2

c2

)
R(r) = 0, j = m, d. (8)

Multiplying equation (7) by �(θ, r) and rearranging terms, we have for the extended polar
angle equation that

∂

∂θ

1

sin θ

∂

∂θ
�(θ, r) sin θ − ζj (r)�(θ, r) = −F(θ, r), j = m, d (9)

F(θ, r) = r2 ∂2

∂r2
�(θ, r) +

2r

R(r)

(
∂

∂r
rR(r)

)
∂

∂r
�(θ, r). (10)

The above method is a simple extension of the separation of variables approach, and can thus
be referred to as a quasi-separation of variables. Each quasi-separation introduces an arbitrary
invariant of quasi-separation in much the same way as each separation introduces an arbitrary
constant of separation.

From the Maxwell equations in the Gaussian system, we can determine the electric field
E(t) (Er(t), Eθ (t), Eϕ(t)) related to the magnetic field. Setting

(Er(t), Eθ (t), Eϕ(t)) = Re[(Er, Eθ , Eϕ) e−iωt ], (11)

we obtain

Er = Er(r, θ) = ic

ωεj

1

r sin θ

∂

∂θ
(Hϕ(r, θ) sin θ), j = m, d (12)

Eθ = Eθ(r, θ) = − ic

ωεj

1

r

∂

∂r
(rHϕ(r, θ)), j = m, d (13)

and

Eϕ = 0, j = m, d. (14)

The boundary conditions of the electric field in the radial component on the interface at the
polar angle θ = α allow us to determine the value of ζj (r).

3. The radial equation for the magnetic field

We first consider the radial equation (8), a pair of ODEs with respect to r distinguished by
metallic and dielectric regions, and discuss it in the two limiting cases of r → ∞ and r → 0
where SPPs in conical geometry are well understood. For r → ∞, the SPPs in conical
geometry approach the SPPs in plane geometry. For r → 0, the SPPs in conical geometry
were studied by Babadjanyan et al [12].

In the case of r → ∞, the radial equation (8) becomes

∂2

∂r2
R(r) +

2

r

∂

∂r
R(r) +

(
ζj (∞)

r2
+ εj

ω2

c2

)
R(r) = 0, j = m, d. (15)
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When the conservation law of energy flow in the closed spherical space, or Sommerfeld’s
radiation condition [26], is taken into consideration, the elementary solutions to equation (15)
should have the form

R(r) = exp(±ikpr)

r
for r → ∞ (16)

where kp is a wave number of the SPPs in planar geometry given by [30]

kp = ω

c

√
εmεd

εm + εd

. (17)

In this case, �(θ, r) is easily written in the form

�(θ, r) = exp(−βj r⊥), j = m, d for r → ∞ (18)

with

r⊥ = r|sin(θ − α)| (19)

βj =
√

k2
p − εj

ω2

c2
, j = m, d (20)

where r⊥ is the distance from the cone surface θ = α and βj are the imaginary wave numbers
of planar SPPs in medium j, perpendicular to the planar structure. Near the cone surface
θ ≈ α, equation (18) is approximately

�(θ, r) ≈ exp(−βj r|θ − α|), j = m, d for r → ∞ and |θ − α| ≈ 0 (21)

which is further discussed in appendix C. With the substitution of equation (16) into
equation (15), the radial equation (15) becomes independent of medium j as follows:

∂2

∂r2
R(r) +

2

r

∂

∂r
R(r) + k2

pR(r) = 0 for r → ∞ (22)

and we find the relation
ζj (∞)

r2
= β2

j , j = m, d for r → ∞. (23)

For r → 0, the radial equation (8) becomes

∂2

∂r2
R(r) +

2

r

∂

∂r
R(r) +

(
ζj (0)

r2
+ εj

ω2

c2

)
R(r) = 0, j = m, d for r → 0, (24)

which can be further simplified according to Babadjanyan et al [12] into the form

∂2

∂r2
R(r) +

2

r

∂

∂r
R(r) +

ζj (0)

r2
R(r) = 0, j = m, d for r → 0 (25)

if we assume that

|ζj (0)|
r2

� |εj |ω
2

c2
, j = m, d for r → 0, (26)

which is usually acceptable unless ζj (0) = 0. Without the term εj in medium j, equation (25)
does not distinguish a pair of differential equations in medium j and therefore it reduces to

∂2

∂r2
R(r) +

2

r

∂

∂r
R(r) +

ζ(0)

r2
R(r) = 0 for r → 0 (27)

where we set

ζ(0) = ζm(0) = ζd(0). (28)
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Now we are ready to consider a generalized radial equation containing equations (22) and
(27) as limited cases. The simplest candidate equation is

∂2

∂r2
R(r) +

2

r

∂

∂r
R(r) +

(
k2
p +

ζ(0)

r2

)
R(r) = 0 for 0 < r < ∞, (29)

which becomes equations (22) and (27) in the respective limits. Most generally, we have

∂2

∂r2
R(r) +

2

r

∂

∂r
R(r) +

(
k2
p +

ζ(0) + A(r)

r2

)
R(r) = 0 for 0 < r < ∞ (30)

where A(r) is arbitrary only if

lim
r→0

A(r) = 0, lim
r→∞ A(r)/r2 = 0. (31)

By setting

A(r) = ζ(r) − ζ(0) (32)

in equation (30), we can generally write

∂2

∂r2
R(r) +

2

r

∂

∂r
R(r) +

(
k2
p +

ζ(r)

r2

)
R(r) = 0 for 0 < r < ∞ (33)

where ζ(r) is arbitrary only if

lim
r→∞ ζ(r)/r2 = 0. (34)

Here, ζ(r) is a newly defined function, which is different from ζj (r), j = m, d. Comparing
equations (8) and (33), we find the useful relation

ζj (r)

r2
= β2

j +
ζ(r)

r2
, j = m, d for 0 < r < ∞, (35)

which includes equation (23). What is important here is that the pair of ODEs distinguished by
metallic and dielectric regions in equation (8) can be unified into a single ODE independent of
those regions in equation (33) if the pair satisfies condition (35). Hence, we call equation (35)
the unification conditions. Moreover, the pair of quasi-separation invariants in ζj (r), j =
m, d, is unified into the single function ζ(r), which is then called a unified quasi-separation
invariant.

Further discussion on the unified radial equation (33) would require more detailed
information on the unified quasi-separation invariant ζ(r), which can be determined from
the boundary conditions.

4. Application of perturbation methods to the extended polar angle equation
for the magnetic field

In the preceding section, the unified quasi-separation invariant ζ(r) is introduced for obtaining
the unified radial equation (33). In this section, we also use ζ(r) for the extended polar angle
equation (9). Writing equation (35) in the form

ζj (r) = (βj r)
2 + ζ(r) (36)

and substituting equation (36) into the extended polar angle equation (9), we obtain

∂

∂θ

1

sin θ

∂

∂θ
�(θ, r) sin θ − {(βj r)

2 + ζ(r)}�(θ, r) = −F(θ, r), j = m, d (37)
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with

F(θ, r) = r2 ∂2

∂r2
�(θ, r) + 2r

(
R(r) +

r

R(r)

∂R(r)

∂r

)
∂

∂r
�(θ, r) (38)

from equation (10).
We are now faced with the problem of solving the extended polar angular equation (37),

which is a PDE with respect to θ and r including the radial function R(r) not yet determined.
The left side of equation (37) originates from the polar angle equation in ordinary separation
of variables for the apex point, and it can be exactly solved as was done by Babadjanyan et al
[12]. This suggests that perturbation methods [31] can be applied to equation (37) as a
perturbing term F(θ, r) on the right side. According to perturbation theory, let us introduce
the perturbation parameter 0 � ε � 1 into equation (37) and consider the perturbed equation

∂

∂θ

1

sin θ

∂

∂θ
�(θ, r) sin θ − {(βj r)

2 + ζ(r)}�(θ, r) = −εF (θ, r), j = m, d. (39)

We look for a solution of the form

�(θ, r) = �(0)(θ, r) + ε�(1)(θ, r) + ε2�(2)(θ, r) + · · · (40)

which satisfies

�(α, r) = �(0)(α, r) + ε�(1)(α, r) + ε2�(2)(α, r) + · · · = 1 (41)

when equation (40) for θ = α is set equal to one from equation (4). Accordingly, ζ(r) and
R(r) should be described as a power series in ε:

ζ(r) = ζ (0)(r) + εζ (1)(r) + ε2ζ (2)(r) + · · · (42)

R(r) = R(0)(r) + εR(1)(r) + ε2R(2)(r) + · · ·. (43)

Substituting equations (40) and (42) into the perturbed equation (39) and setting the coefficients
of the powers of ε equal to each other, we find for the zeroth-order equation that

∂

∂θ

1

sin θ

∂

∂θ
�(0)(θ, r) sin θ − {(βj r)

2 + ζ (0)(r)}�(0)(θ, r) = 0, j = m, d, (44)

with the boundary condition

�(0)(α, r) = 1 (45)

from equation (41). In the same way, we have for the first-order equation that

∂

∂θ

1

sin θ

∂

∂θ
�(1)(θ, r) sin θ − {(βj r)

2 + ζ (0)(r)}�(1)(θ, r)

= −
[
r2 ∂2

∂r2
�(0)(θ, r) + 2r

(
R(0)(r) +

r

R(0)(r)

∂R(0)(r)

∂r

)
∂

∂r
�(0)(θ, r)

− ζ (1)(r)�(0)(θ, r)

]
, j = m, d, (46)

with the boundary condition

�(1)(α, r) = 0. (47)

Our considerations in this paper are limited to the zeroth-order equation (44) for the extended
polar angle equation (37). The first-order or higher-order equations will be discussed
elsewhere.
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5. The zeroth-order extended polar angle equation for the magnetic field

The zeroth-order extended polar angle equation (44) is considered to be an ODE with respect
to θ because r can be treated as a constant for the calculations. If g(θ, r) is a solution to ODE
(44), the solution satisfying the boundary condition (45) can be written in the form

�(0)(θ, r) = g(θ, r)/g(α, r). (48)

Note that equation (48) also gives a closely approximate solution around the conical surface
θ = α to the original polar extended angle equation (9) because the perturbing term
F(θ, r) → 0 as θ → α (see appendix B). Equation (44) can be transformed using cos θ = x

into the associated Legendre differential equation [32]

(1 − x2)
d2

dx2
�(0)(x, r) − 2x

d

dx
�(0)(x, r) +

[
lj (r){lj (r) + 1} − 1

1 − x2

]
�(0)(x, r) = 0,

j = m, d (49)

where

lj (r) = − 1
2 + iτj (r), τj (r) =

√
(βj r)2 + ζ (0)(r) − 1/4. (50)

Linearly independent solutions [32] to equation (49) are provided by associated Legendre
functions of the first kind, P 1

−(1/2)+iτj (r)
(x) and P 1

−(1/2)+iτj (r)
(−x), which are called the conical

functions [33]. Here, P 1
−(1/2)+iτj (r)

(x) is a decreasing function defined in −1 < x � 1 with
the values of 0 at x = 1 and +∞ at x = −1. From equation (48), the solution satisfying the
boundary condition (45) can be written in the form

�(0)(θ, r) =
{

P 1
−(1/2)+iτm(r)(cos θ)

/
P 1

−(1/2)+iτm(r)(cos α), θ � α

P 1
−(1/2)+iτd (r)(−cos θ)

/
P 1

−(1/2)+iτd (r)(−cos α), θ � α
(51)

Note that, as r → ∞ at θ ≈ α, equation (51) approaches the extended angular function in
planar geometry, equation (21), whose proof is given in appendix C.

Without detailed knowledge of the radial function, we can describe the boundary condition
for the continuity of the radial electric field at the angle θ = α. In perturbation methods, the
radial electric field is written as a power series in ε:

Er(r) = E(0)
r (r) + εE(1)

r (r) + ε2E(2)
r (r) + · · ·. (52)

Substituting equations (40), (43) and (52) into equation (12), and setting the coefficients of
the powers of ε equal to each other, we find for the zeroth-order radial electric field that

E(0)
r (r, θ) = ic

ωεj

1

r sin θ

∂

∂θ
(R(0)(r)�(0)(θ, r) sin θ), j = m, d. (53)

Substituting equation (51) into equation (53), we obtain

E(0)
r (r, θ) = ic

ω

R(0)(r)

r




1

εm

[
−sin θ

P ′1
−(1/2)+iτm(r)(cos θ)

P 1
−(1/2)+iτm(r)(cos α)

+ cot θ
P 1

−(1/2)+iτm(r)(cos θ)

P 1
−(1/2)+iτm(r)(cos α)

]
,

θ � α

1

εd

[
sin θ

P ′1
−(1/2)+iτd (r)(−cos θ)

P 1
−(1/2)+iτd (r)(−cos α)

+ cot θ
P 1

−(1/2)+iτd (r)(−cos θ)

P 1
−(1/2)+iτd (r)(−cos α)

]
,

θ � α

(54)
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Figure 2. Numerical calculations of the zeroth-order unified quasi-separation invariant at r = 0,
ζ (0)(0), as a function of the cone angle 2α when εd = 1 and εm = −20 are used in equation (55).
The broken line ζ (0)(0) = 0.25 shows the lower limit to ν > 0, where the zeroth-order unified radial
equation (64) is approximately solved by transforming it into the unmodified Bessel differential
equation of purely imaginary order. The inset shows the original figure at a hundred times larger
scale for the ζ (0)(0)-axis.

where P ′1
−(1/2)+iτj (r)

(x) = ∂xP
1
−(1/2)+iτj (r)

(x) for j = m, d. The continuity of the zeroth-order
radial electric field at the polar angle θ = α thus gives the form

1

εm

[
−sin α

P ′1
−(1/2)+iτm(r)(cos α)

P 1
−(1/2)+iτm(r)(cos α)

+ cot α

]
= 1

εd

[
sin α

P ′1
−(1/2)+iτd (r)(−cos α)

P 1
−(1/2)+iτd (r)(−cos α)

+ cot α

]
, (55)

which is the boundary condition to numerically determine the zeroth-order unified quasi-
separation invariant ζ (0)(r). Note that the continuity of the angular electric displacement,
εjEθ(r, θ) in medium j, at θ = α is automatically satisfied using equation (13) and provides
no further conditions.

6. Algebraically approximate determination of the zeroth-order unified
quasi-separation invariant

The zeroth-order unified quasi-separation invariant ζ (0)(r) can be numerically determined by
solving the boundary condition (55) with specific values of dielectric functions in metallic and
dielectric matter. Assuming that the dielectric matter is air, the metallic cone is gold and the
light is at about 750 nm wavelength, we use εd = 1 for the dielectric matter and εm = −20 for
the metallic cone in the numerical calculations. Although the experimental dielectric function
of the metallic cone is εm = −20.6 + 1.57i at the 750 nm wavelength [34], the imaginary part
is much smaller than the real part and is thus ignored for the sake of simplicity. Figure 2 shows
ζ (0)(0) as a function of the cone angle 2α. In figure 3, the solid lines show ζ (0)(r)− ζ (0)(0) for
specific cone angles as a function of r/λ0, where λ0 (= 2πc/ω) is the wavelength in vacuum.
Figure 3 also shows the broken lines that are fitting curves for the solid lines in the range of
0 � r/λ0 � 2 and are consequently unclear due to their overlapping with the solid lines. If the
fitting range is broader, the differences between broken and solid lines are clearly observed.
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Figure 3. Numerical calculations of the zeroth-order unified quasi-separation invariant ζ (0)(r)

as a function of the radius r for various cone angles 2α when εd = 1 and εm = −20 are used
in equation (55). For convenience of explanation, ζ (0)(r) − ζ (0)(0) is shown. Broken lines are
fitting curves that are not clear because of their overlapping with the solid lines obtained from the
numerical calculations.

Here we here use a fitting function with two parameters, p and q, in the form

ζ (0)(r) − ζ (0)(0) = (pλ0)

[
(r/λ0) + (q/λ0)

{
exp

(
− (r/λ0)

(q/λ0)

)
− 1

}]
= p[r + q{exp(−r/q) − 1}] (56)

which is the same as the equation obtained for free fall motion with air resistance proportional
to the velocity. The fitting function (56) is well known by physicists to be a function of r that
shows a square increase around r = 0 and a linear increase at large r. Its behavior is approximate
for ζ (0)(r) in equation (55) (see appendix D). In r � q, equation (56) approximates a square
function of r as follows:

ζ (0)(r) − ζ (0)(0) = p

{
r2

2!q
− r3

3!q2
+ · · · + (−1)n

rn

n!qn−1
+ · · ·

}
≈ p

2q
r2 for r � q.

(57)

Table 1 shows several values of p and q normalized to the wavelength in vacuum, λ0. The
values of q/λ0 indicate the effective range of r/λ0 in the approximation (57). The values of
p/2q normalized to the wavelength, λ0, are used in the following sections. For convenience,
equation (57) is rewritten in the form

ζ (0)(r) ≈ ζ (0)(0) + ar2 for r � q (58)

where

a = p

2q
. (59)
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Table 1. Values of the parameters in equations (56)–(59) used for solving equation (65). Fitting
parameters of p and q in equation (56) were obtained by fitting the curves in figure 3. Fitting
parameters are normalized by the wavelength in vacuum, λ0. The values of pλ2

0/2q conveniently
replaced by aλ2

0 appear in the approximation of the zeroth-order unified quasi-separation invariant
ζ (0)(r) in equation (58). The values of ζ (0)(0) are obtained from the boundary condition in
equation (55) when r = 0.

2α (degrees) pλ0 q/λ0 pλ2
0/2q (= aλ2

0) ζ (0)(0)

1 349.9 27.24 6.422 798.3
5 43.69 3.233 6.756 31.80

10 15.27 1.027 7.433 7.839
20 7.053 0.4586 7.689 1.834
30 4.713 0.3170 7.434 0.6888

Table 2. Values of the parameters in equations (56)–(59) numerically calculated from
equations (60)–(63) for comparison with table 1. There is a great difference in the corresponding
data values between tables 1 and 2.

2α (degrees) pλ0 q/λ0 pλ2
0/2q (= aλ2

0) ζ (0)(0)

1 8.326 0.100 2 41.56 16 040
5 1.665 0.020 04 41.56 641.9

10 0.8326 0.010 02 41.56 160.7
20 0.4163 0.005 009 41.56 40.35
30 0.2775 0.003 339 41.56 18.07

In appendix D, we obtain such approximate expressions as

p ≈ 2

α

(
εm − εd

εmβm − εdβd

)
(60)

q ≈ 1

αk2
p

(
εm − εd

εmβm − εdβd

)
(61)

a ≈ k2
p (62)

ζ (0)(0) ≈ 1

α2

(
εm − εd

εm + εd

)2

+
1

4
, (63)

which are used in forming table 2. Unfortunately, there is a great difference in the
corresponding numerical values between tables 1 and 2. Consequently, equations (60)–(63)
are too roughly approximated to use them for the asymptotic expression of ζ (0)(r) in the
following section. We have no choice but to use the fitting parameters in table 1 until a
suitable asymptotic expression for ζ (0)(r) is found.

7. Analytically approximate solutions to the zeroth-order unified radial equation for
the magnetic field

Substituting equations (42) and (43) into the unified radial equation (33), and setting the
coefficients of the powers of ε equal to each other, we find for the zeroth-order unified radial
equation that

∂2

∂r2
R(0)(r) +

2

r

∂

∂r
R(0)(r) +

(
k2
p +

ζ (0)(r)

r2

)
R(0)(r) = 0 for 0 < r < ∞. (64)
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In the preceding section, the zeroth-order unified quasi-separation invariant ζ (0)(r) was
numerically determined and expressed as an appropriate fitting function in equation (56).
Here, we consider a simple case where the differential equation (64) can be easily solved. For
the approximate equation (58), equation (64) becomes

∂2

∂r2
R(0)(r) +

2

r

∂

∂r
R(0)(r) +

(
k2
p + a +

ζ (0)(0)

r2

)
R(0)(r) = 0, (65)

which is transformed using R(0)(r) = w(z)/
√

z, z = kmpr and kmp =
√

k2
p + a into the

unmodified Bessel differential equation of purely imaginary order as follows:

∂2w(z)

∂z2
+

1

z

∂w(z)

∂z
+

(
1 − (iν)2

z2

)
w(z) = 0 (66)

where

ν =
√

ζ (0)(0) − 1/4. (67)

Here, to simplify the explanation, we consider only the case of ν > 0, which corresponds
to 2α < ∼39.9◦ in figure 2. As a pair of independent solutions of Bessel equation (66), we
choose the Hankel functions H(1)

iν (z) and H(2)
iν (z) that correspond to the outgoing wave away

from the conical tip and the incoming wave that propagates toward it, respectively, as the
asymptotic behavior [35] as z → ∞. In the superfocusing mode, our attention is focused on
the incident wave expressed by the incoming wave H(2)

iν (z). The reflected wave expressed by
the outgoing wave H(1)

iν (z) is a secondary matter for small cone angles (see equation (A.25)
in appendix A). Thus, let us write a solution to equation (65) for the superfocusing mode as

R(0)(r) = H(2)
iν (kmpr)

/√
kmpr. (68)

According to (5.14) with (5.3), (5.9) and (5.10) in [35] and with (7.11) of chapter 10 in [36],
the asymptotic expansion for H(2)

iν (νz) is given by

H(2)
iν (νz) = e−νπ/2

(
2

πν

)1/2

(1 + z2)−1/4 exp[−i(νξ(z) − π/4)]

(
1 − U1(u(z))

iν
+ · · ·

)
(69)

where

ξ(z) = (1 + z2)1/2 + ln

(
z

1 + (1 + z2)1/2

)
(70)

U1(u(z)) = 3u(z) − 5{u(z)}3

24
(71)

u(z) = (1 + z2)−1/2. (72)

From equations (71) and (72), we obtain |U1(u(z))| � 2/
√

5 (≈ 0.8944). When ν �
max|U1(u(z))| = 2/

√
5, H(2)

iν (νz) in equation (69) can be approximated to the form

H(2)
iν (νz) ≈ e−νπ/2

(
2

πν

)1/2

(1 + z2)−1/4 exp[−i(νξ(z) − π/4)] for ν � 2/
√

5. (73)

In the substitution z = kmpr/ν into equation (73), the zeroth-order radial function, R(0)(r), in
equation (68) is approximated as

R(0)(r) ≈ e−νπ/2

√
2

πµ(r)kmpr
exp

[
−i

(
µ(r) + ν ln

(
kmpr

ν + µ(r)

)
− π/4

)]

for ν � 2/
√

5 (74)



12492 K Kurihara et al

Figure 4. Numerical calculations of the wave number of conical SPPs normalized by that of
planar SPPs, kc(r)/kp , as a function of the radius r for specific cone angles 2α when εd = 1
and εm = −20 are used in equation (76). The broken line does not satisfy the condition of the
approximation denoted by r < q in equation (57). Specific values of q for various cone angles 2α

are shown in table 1.

where

µ(r) =
√

k2
mpr2 + ν2. (75)

Differentiating the phase in equation (74) with respect to radius r, we obtain the wave number
of the conical surface plasmons, kc(r), in the zeroth-order perturbation as follows:

kc(r) = d

dr

[
µ(r) + ν ln

(
kmpr

ν + µ(r)

)
− π/4

]
= ν

r
+

k2
mpr

ν + µ(r)
, (76)

which is more accurate than the previously used form [1, 12]

kc(r) ≈ ν/r. (77)

Either of equations (76) and (77) means that the wave number of the conical SPPs anomalously
increases closer to the apex of the cone. Equation (76) is, however, more appropriate
for describing the gradual transition from propagating to localized SPPs; this is shown by
numerical calculations of kc(r)/kp using equation (76) for the specific cone angles as a
function of r/λ0 (figure 4).

8. Electric field-line patterns of superfocusing modes in the zeroth-order perturbation

Field-line patterns are more sophisticated graphical representations of electromagnetic fields
than field-vector patterns because of their simpler description. When the electromagnetic field
has only an azimuthal component of the magnetic field that depends only on radius r and polar
angle θ in spherical coordinates, we can obtain a time-varying scalar field whose contours
represent the field-line pattern for the electric field that is derived from the magnetic field.
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The tangent at an arbitrary point of an electric field line indicates the direction of the
electric field vector E(r, θ, t) at this point. This fact can be described mathematically by
using a line vector element ds as follows:

E(r, θ, t) × ds = 0 (78)

which can be simplified into the form

dr

Er(r, θ, t)
− r dθ

Eθ(r, θ, t)
= 0 (79)

when

E(r, θ, t) = Er(r, θ, t)er + Eθ(r, θ, t)eθ (80)

ds = dr er + r dθ eθ (81)

where er and eθ are the unit vectors to the r- and θ -axes, respectively. From equations (11) to
(13) and equation (2), we obtain the r- and θ -components of the electric field as follows:

Er(r, θ, t) = Re[Er(r, θ) exp(−iωt)] = c

ωεj

1

r sin θ

∂

∂θ
{Hϕ(r, θ, t ′) sin θ} (82)

Eθ(r, θ, t) = Re[Eθ(r, θ) exp(−iωt)] = − c

ωεj

1

r

∂

∂r
{rHϕ(r, θ, t ′)} (83)

where

t ′ = t − π

2ω
. (84)

Substituting equations (82) and (83) into equation (79), we obtain a differential equation
expressed in terms of total derivatives with respect to r and θ as follows:

sin θ
∂

∂r
(rHϕ(r, θ, t ′)) dr + r

∂

∂θ
(Hϕ(r, θ, t ′) sin θ) dθ = 0, (85)

which can be described by the exact differential form

dψ(r, θ) = ∂

∂r
ψ(r, θ) dr +

∂

∂θ
ψ(r, θ) dθ = 0 (86)

with

ψ(r, θ) = Hϕ(r, θ, t ′)r sin θ. (87)

The solution is ψ(r, θ) = const, in which the time-varying scalar field for the electric field-line
representation, denoted by f (r, θ, t), is proportional to the harmonic oscillation. This gives

f (r, θ, t) = Re[R(r) exp(−iωt + iπ/2)]�(θ, r)r sin θ. (88)

The field-line patterns at time t = t0 are described by the scalar field with the contour

f (r, θ, t0) = C (89)

where C is the contour level. The contour interval can be controlled by the interval value of the
contour levels. The evolution of field-line patterns can be investigated for different moments

t = t0 + nτ with n = 0, 1, 2, 3, . . . (90)

where τ is a suitable chosen duration between two neighboring snapshots. In perturbation
methods, the time-varying scalar field for the electric field-line representation is written as a
power series in ε:

f (r, θ, t) = f (0)(r, θ, t) + εf (1)(r, θ, t) + ε2f (2)(r, θ, t) + · · ·. (91)
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(a)

(b)

(c )

Figure 5. Electric field lines of the zeroth-order superfocusing mode of SPPs in conical geometry
for the cone angle 2α = 10◦ (a), 20◦ (b) and 30◦ (c) at t0 = 0. Geometrical dimensions of the
horizontal and vertical axes are r/λ0 = 1.

Substituting equations (40), (43) and (91) into equation (88), and setting the coefficients of
the powers of ε equal to each other, we find for the zeroth-order perturbation that

f (0)(r, θ, t) = Re[R(0)(r) exp(−iωt + iπ/2)]�(0)(θ, r)r sin θ. (92)

In figure 5, electric field-line patterns of the zeroth-order superfocusing modes of conical
SPPs for the cone angle 2α = 10◦ (a), 20◦ (b) and 30◦ (c) are described by equation (92)
with the conditions of εd = 1, εm = −20 and t0 = 0. In the calculations, we do not use the
approximation to equation (74) in R(0)(r) when equation (68) is estimated. The geometrical
dimensions in figure 5 are r/λ0 = 1 on both the horizontal and vertical axes. Based on the
values of q/λ0 shown in table 1, all the areas in the three figures in figure 5 mostly satisfy
the condition of equation (58), from which equation (68) is derived. The electric field-line
patterns in figure 5 clearly show that the superfocusing phenomena occur more rapidly with
increasing cone angle, which can be accounted for by the behavior of the wave number as
a function of r in figure 4. In other words, with increasing cone angle, only a smaller area
at the cone apex is allowed for localized SPPs whose wave number is much larger than that
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(a) (b)

(c) (d )

Figure 6. Pattern motion of electric field lines of the zeroth-order superfocusing mode of SPPs in
conical geometry for cone angle 2α = 10◦ at different moments t = t0 + nτ (t0 = T/16, τ = T/8
and n = 0 (a), 1 (b), 2 (c) and 3 (d)). Geometrical dimensions of the horizontal and vertical axes
are r/λ0 = 1.

of propagating SPPs. On the nanometer scale, the electric field would be extraordinarily
enhanced for tapered nanoscale metal tips with smaller cone angles because a larger area at
the cone apex is involved in localized SPPs.

In figure 6, the field-pattern evolution for the zeroth-order superfocusing mode of conical
SPPs at cone angle 2α = 10◦ is represented for different moments t = t0 + nτ for n = 0
(a), 1 (b), 2 (c) and 3 (d) with t0 = T/16 and τ = T/8, where T represents the time period
(T = 2π/ω). The field-pattern evolution is shown during a half-period T/2. εd = 1 and
εm = −20 were used in the calculations, just as in figure 5. The geometrical dimensions
are also r/λ0 = 1 on both the horizontal and vertical axes. Figure 6 clearly shows that the
field-pattern evolution shows a smaller change during half the time period in closer proximity
to the cone apex because the group velocity of conical SPPs, ω/kc(r), becomes slower. The
computer-aided animation of the field-pattern evolution can give an intuitive understanding of
the accumulation of superfocusing SPPs.

9. Concluding remarks and perspectives

We proposed a new analytic method based on the quasi-separation of variables for solving
partial differential equations directly derived from the Maxwell equations and applied it to
superfocusing problems for SPPs especially in conical geometry. The quasi-separation of
variables combined with perturbation methods allows us to obtain an easily solvable set of
homogeneous ordinary differential equations in the zeroth-order perturbation method. In the
zeroth-order solution to superfocusing SPPs in conical geometry, we discussed cones with
cone angles greater than previously considered and examined the wave number of conical
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SPPs around the apex more carefully than has been done before. Electric field-line patterns
around the apex of cones were expressed more exactly than is possible with the previously
reported methods. In the new analytic method, more accurate considerations are possible
because of the first-order or higher-order perturbation methods, in which a solvable set of
nonhomogeneous ordinary differential equations is obtained (this will be discussed in detail
elsewhere). We believe that this new analytic method is a powerful and useful technique for
theoretically understanding superfocusing SPPs in other geometries such as wedge-shaped
[15] and half two-sheet hyperboloidal geometries.
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Appendix A. Comments on the separation of variables approach taken by
Babadjanyan et al

The ordinary separation of variables approach taken by Babadjanya et al [12] begins by
assuming the magnetic field as

Hϕ(r, θ) = R̄(r)�̄(θ). (A.1)

Substituting equation (A.1) into the wave equation (1), we get(
r

R̄(r)

∂2

∂r2
rR̄(r) + εj

ω2

c2
r2

)
+

1

�̄(θ)

∂

∂θ

1

sin θ

∂

∂θ
�̄(θ) sin θ = 0, j = m, d. (A.2)

Since the two terms are separately functions of r and θ respectively, each one must be constant:

r

R̄(r)

∂2

∂r2
rR̄(r) + εj

ω2

c2
r2 = −ζ̄j , j = m, d (A.3)

1

�̄(θ)

∂

∂θ

1

sin θ

∂

∂θ
�̄(θ) sin θ = ζ̄j , j = m, d. (A.4)

Here, ζ̄j for j = m, d is the separation constant to be determined from the boundary conditions.
Multiplying equation (A.3) by R̄(r) and rearranging terms, we have for the radial equation

that
∂2

∂r2
R̄(r) +

2

r

∂

∂r
R̄(r) +

(
ζ̄j

r2
+ εj

ω2

c2

)
R̄(r) = 0, j = m, d. (A.5)

For r → 0, when the condition

|ζ̄j |
r2

� |εj |ω
2

c2
, j = m, d (A.6)

is normally satisfied, the radial equation (A.5) becomes

∂2

∂r2
R̄(r) +

2

r

∂

∂r
R̄(r) +

ζ̄j

r2
R̄(r) = 0, j = m, d for r → 0. (A.7)

Without the term εj in medium j, equation (A.7) does not distinguish a pair of differential
equations in medium j and therefore it reduces to

∂2

∂r2
R̄(r) +

2

r

∂

∂r
R̄(r) +

ζ̄

r2
R̄(r) = 0 for r → 0 (A.8)
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where we set

ζ̄ = ζ̄m = ζ̄d . (A.9)

Equation (A.8) is the final radial equation for describing the superfocusing phenomena
based on the ordinary separation of variables approach. Comparing equation (A.8) with
equation (65) described simply as

∂2

∂r2
R(0)(r) +

2

r

∂

∂r
R(0)(r) +

(
k2
mp +

ζ (0)(0)

r2

)
R(0)(r) = 0, (A.10)

we find the corresponding relationships between the ordinary and quasi-separations of variables
approach as follows:

R̄(r) = lim
kmp→0

R(0)(r) (A.11)

ζ̄ = ζ (0)(0). (A.12)

The general solution of equation (A.8) for r > 0 is

R̄(r) = a
exp[iν ln r]√

r
+ b

exp[−iν ln r]√
r

(A.13)

ν =
√

ζ̄ − 1/4, (A.14)

where a and b are arbitrary constants. In contrast, the general solution of equation (A.10) for
r > 0 is

R(0)(r) = c
Fiν(kmpr)√

kmpr
+ d

Giν(kmpr)√
kmpr

(A.15)

where Fiν(x) and Giν(x) are two real independent solutions for unmodified Bessel functions
of purely imaginary order, defined by Dunster [35] as

Fiν(x) = 1
2

{
e−νπ/2 H(1)

iν (x) + eνπ/2 H(2)
iν (x)

}
(A.16)

Giν(x) = 1
2i

{
e−νπ/2 H(1)

iν (x) − eνπ/2 H(2)
iν (x)

}
. (A.17)

Their behavior for small values of x is respectively described as

Fiν(x) =
(

2 tanh(νπ/2)

νπ

)1/2

{cos(ν ln(x/2) − φν,0) + O(x2)}, x → 0 + (A.18)

Giν(x) =
(

2 coth(νπ/2)

νπ

)1/2

{sin(ν ln(x/2) − φν,0) + O(x2)}, x → 0 + (A.19)

where

φν,0 = arg{�(1 + iν)}. (A.20)

As a superfocusing solution for the time dependence e−iωt in equation (2), we must set a = 0
in equation (A.13), obtaining

R̄(r) = b
exp[−iν ln r]√

r
, (A.21)
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which can be used to more accurately determine the zeroth-order radial function R(0)(r)

according to the corresponding relationship in equation (A.11). Substituting equations (A.18)
and (A.19) into equation (A.15), we obtain the general solution for small values of kmpr as
follows:

R(0)(r) = c√
kmpr

(
2 tanh(νπ/2)

νπ

)1/2

{cos(ν ln(kmpr/2) − φν,0)}

+
d√
kmpr

(
2 coth(νπ/2)

νπ

)1/2

{sin(ν ln(kmpr/2) − φν,0)}, kmpr → 0.

(A.22)

Comparing equations (A.21) and (A.22) with condition (A.11), we find that

c = b
√

kmp exp

[
iν ln

kmp

2
− iφν,0

] (
2 tanh(νπ/2)

νπ

)−1/2

(A.23)

d = −ib
√

kmp exp

[
iν ln

kmp

2
− iφν,0

] (
2 coth(νπ/2)

νπ

)−1/2

. (A.24)

Substituting equations (A.23) and (A.24) into equation (A.15) and using equations (A.16) and
(A.17) to express R(0)(r) in terms of Hankel functions, we obtain

R(0)(r) = b exp

[
iν ln

kmp

2
− iφν,0

] (
2

νπ

)−1/2

×
(√

coth(νπ/2) − √
tanh(νπ/2)

2
e−νπ/2 H(1)

iν (kmpr)√
r

+

√
coth(νπ/2) +

√
tanh(νπ/2)

2
eνπ/2 H(2)

iν (kmpr)√
r

)
, (A.25)

which is exact for the superfocusing solution of the zeroth-order radial function and more
accurate than equation (68) in including the reflected outgoing wave described by the Hankel
function of the first kind. If ν (equal to

√
ζ (0) − 1/4) is large enough (physically corresponding

to small cone angles in figure 2) to make the approximation

tanh(νπ/2) ≈ 1 (A.26)

coth(νπ/2) ≈ 1, (A.27)

equation (A.25) can be approximately expressed as

R(0)(r) ≈ b exp

[
iν ln

kmp

2
− iφν,0

] (
2

νπ

)−1/2

eνπ/2 H(2)
iν (kmpr)√

r
, (A.28)

which is physically equivalent to the solution R(0)(r) in equation (68).
On the other hand, multiplying equation (A.4) by �̄(θ) and rearranging terms, we have

for the polar angle equation that

∂

∂θ

1

sin θ

∂

∂θ
�̄(θ) sin θ − ζ̄j �̄(θ) = 0, j = m, d. (A.29)

Comparing equation (A.29) with equation (44) described as

∂

∂θ

1

sin θ

∂

∂θ
�(0)(θ, r) sin θ − {(βj r)

2 + ζ (0)(r)}�(0)(θ, r) = 0, j = m, d, (A.30)



Superfocusing modes of surface plasmon polaritons in conical geometry 12499

we find the corresponding relationships as follows:

�̄(θ) = lim
r→0

�(0)(θ, r) (A.31)

ζ̄ = ζ (0)(0), (A.32)

where equation (A.32) is the same as equation (A.12). Substituting equation (51) into
equation (A.31), we obtain

�̄(θ) =
{

P 1
−(1/2)+iν(cos θ)

/
P 1

−(1/2)+iν(cos α), θ � α

P 1
−(1/2)+iν(−cos θ)

/
P 1

−(1/2)+iν(−cos α), θ � α,
(A.33)

where ν =
√

ζ̄ − 1/4 as defined in equation (A.14). Note that equation (A.33) is more
accurate than equations (6) and (7) of [12]. At the polar angle θ = α, the continuity of the
radial electric field in equation (12) yields the boundary condition

1

εm sin θ

∂

∂θ
�̄(θ) sin θ

∣∣∣∣
θ→α−

= 1

εd sin θ

∂

∂θ
�̄(θ) sin θ

∣∣∣∣
θ→α+

(A.34)

or

1

εm

[
−sin α

P ′1
−(1/2)+iν(cos α)

P 1
−(1/2)+iν(cos α)

+ cot α

]
= 1

εd

[
sin α

P ′1
−(1/2)+iν(−cos α)

P 1
−(1/2)+iν(−cos α)

+ cot α

]
, (A.35)

which is equal to the limit of equation (55) as r → 0. Equation (A.35) is also more accurate
than equation (16) of [12].

Appendix B. Proof that F(θ, r) → 0 as θ → α for Ψ(θ, r) = g(θ, r)/g(α, r) in the
extended polar angle equation (9)

The term F(θ, r) in equation (10) is

F(θ, r) = r2 ∂2�(θ, r)

∂r2
+ 2r

(
1 +

r

R(r)

∂R(r)

∂r

)
∂�(θ, r)

∂r
. (B.1)

If the extended angular function �(θ, r) is symbolically expressed by

�(θ, r) = g(θ, r)

g(α, r)
, (B.2)

we have

∂

∂r
�(θ, r) = 1

(g(α, r))2

(
∂g(θ, r)

∂r
g(α, r) − g(θ, r)

∂g(α, r)

∂r

)
(B.3)

∂2

∂r2
�(θ, r) = 1

(g(α, r))2

(
∂2g(θ, r)

∂r2
g(α, r) − g(θ, r)

∂2g(α, r)

∂r2

)

− 2

g(α, r)

∂g(α, r)

∂r

∂

∂r
�(θ, r) (B.4)

which easily leads to

∂�(θ, r)

∂r
→ 0,

∂2�(θ, r)

∂r2
→ 0 as θ → α. (B.5)

Substituting equation (B.5) into equation (B.1), we obtain F(θ, r) → 0 as θ → α and find that
the original equation (9) becomes equivalent to the zeroth-order equation (44) when �(θ, r) is
described as equation (B.2). This means the zeroth-order extended polar angle equation (44)
gives an exact solution at the conical surface θ = α and therefore provides a closely
approximate solution around it.
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Appendix C. Proof that equation (51) approaches equation (21) as r → ∞ at θ ≈ α

A useful formula for the Legendre functions of complex degree [32, 36] is

P−(1/2)+iτj (r)(cos θ) ≈ exp(τj (r)θ)√
2πτj (r) sin θ

, j = m, d for τj (r) → ∞, (C.1)

which is applied to the associated Legendre functions

P 1
−(1/2)+iτj (r)

(cos θ) = −(1 − cos2 θ)1/2 d

d(cos θ)
P−(1/2)+iτj (r)(cos θ) (C.2)

and hence we find that

P 1
−(1/2)+iτj (r)

(cos θ) ≈
√

τj (r)

2π sin θ
exp(τj (r)θ), j = m, d for τj (r) → ∞.

(C.3)

Replacing θ by π − θ in equation (C.3), we obtain

P 1
−(1/2)+iτj (r)

(−cos θ) ≈
√

τj (r)

2π sin θ
exp(τj (r)(π − θ)), j = m, d for τj (r) → ∞.

(C.4)

Substituting equations (C.3) and (C.4) into equation (51), we find that

�(θ, r) =
√

sin α

sin θ

{
exp(τm(r)(θ − α)), θ � α

exp(τd(r)(α − θ)), θ � α
for τj (r) → ∞, j = m, d.

(C.5)

From equations (50) and (34), we find that the condition τj (r) → ∞ in equation (C.5) can be
replaced by r → ∞. After making the substitution

sin α

sin θ
≈ 1 for θ ≈ α (C.6)

and

τj (r) → βj r, j = m, d for r → ∞, (C.7)

equation (C.5) gives the asymptotic representation of �(θ, r)as follows:

�(θ, r) ≈
{

exp(βmr(θ − α)), θ � α

exp(βdr(α − θ)), θ � α
for r → ∞ and θ ≈ α, (C.8)

which eventually leads to equation (21).

Appendix D. Approximate behavior of ζ(0)(r) for small and large r

Figures 3 and 4 show that ζ (0)(r) becomes larger with smaller cone angle 2α, and hence we
consider the boundary condition (55) for α � 1 and ζ (0)(r) � 1. From (C.3), we obtain for
ζ (0)(r) � 1 that

P 1
−(1/2)+iτm(r)(cos θ) ≈

√
τm(r)

2π sin θ
exp(τm(r)θ), (D.1)

P ′1
−(1/2)+iτm(r)(cos θ) = ∂P 1

−(1/2)+iτm(r)(cos θ)

∂(cos θ)
≈ −τm(r)

sin θ

√
τm(r)

2π sin θ
exp(τm(r)θ). (D.2)
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From (C.4), we obtain for ζ (0)(r) � 1 that

P 1
−(1/2)+iτd (r)(−cos θ) ≈

√
τd(r)

2π sin θ
exp(τd(r)(π − θ)), (D.3)

P ′1
−(1/2)+iτd (r)(−cos θ) ≈ −τd(r)

sin θ

√
τd(r)

2π sin θ
exp(τd(r)(π − θ)). (D.4)

Substituting equations (D.1)–(D.4) into the boundary condition (55), and using α � 1, we
find that

1

εm

[
τm(r) +

1

α

]
− 1

εd

[
−τd(r) +

1

α

]
≈ 0. (D.5)

Then, substituting equation (50) into equation (D.5) and rearranging terms, we have√
(βmr)2 + ζ (0)(r) − 1/4

εm

+

√
(βdr)2 + ζ (0)(r) − 1/4

εd

+
1

α

(
1

εm

− 1

εd

)
≈ 0, (D.6)

which is considered for small and large r.
In the case of small r, as r → 0, equation (D.6) approaches√

ζ (0)(0) − 1/4

εm

+

√
ζ (0)(0) − 1/4

εd

+
1

α

(
1

εm

− 1

εd

)
≈ 0, (D.7)

so that

ζ (0)(0) ≈ 1

α2

(
εm − εd

εm + εd

)2

+
1

4
. (D.8)

From equations (D.6) and (D.7), we have√
(βmr)2 + ζ (0)(r) − 1/4 −

√
ζ (0)(0) − 1/4

εm

+

√
(βdr)2 + ζ (0)(r) − 1/4 −

√
ζ (0)(0) − 1/4

εd

≈ 0. (D.9)

To approximately estimate equation (D.9), using the approximation

(1 + x)1/2 − 1 ≈ 1
2x for |x| � 1, (D.10)

we have for small r that

(βmr)2 + ζ (0)(r) − ζ (0)(0)

εm

+
(βdr)

2 + ζ (0)(r) − ζ (0)(0)

εd

≈ 0. (D.11)

Finally, we obtain

ζ (0)(r) ≈ ζ (0)(0) + k2
pr2 for

r

λ0
� 1

2
√

2πα
, (D.12)

which shows a square increase around r = 0.
In the case of large r, translating equation (D.6) into the form

βmr
√

1 + {ζ (0)(r) − 1/4}/(βmr)2

εm

+
βdr

√
1 + {ζ (0)(r) − 1/4}/(βdr)2

εd

+
1

α

(
1

εm

− 1

εd

)
≈ 0

(D.13)



12502 K Kurihara et al

and applying equation (D.10) to equation (D.13), we have

βmr
(
1 + 1

2 {ζ (0)(r) − 1/4}/(βmr)2
)

εm

+
βdr

(
1 + 1

2 {ζ (0)(r) − 1/4}/(βdr)
2
)

εd

+
1

α

(
1

εm

− 1

εd

)
≈ 0 (D.14)

or
ζ (0)(r) − 1/4

2εmβmr
+

ζ (0)(r) − 1/4

2εdβdr
+

1

α

(
1

εm

− 1

εd

)
≈ 0. (D.15)

Finally, we obtain

ζ (0)(r) ≈ 2βmβd

α

(
εm − εd

εmβm − εdβd

)
r for

r

λ0
� 1

πα
√|εm| . (D.16)

We can summarize by saying that the approximate behaviors of ζ (0)(r) for small and large
r show a square increase such as in equation (D.12) and a linear increase such as in
equation (D.16), respectively. Comparing these approximate behaviors with equations (56)–
(59), we obtain roughly approximate relations as follows:

ζ (0)(0) ≈ 1

α2

(
εm − εd

εm + εd

)2

+
1

4
(D.17)

a ≈ k2
p (D.18)

p ≈ 2

α

(
εm − εd

εmβm − εdβd

)
(D.19)

q = p

2a
≈ 1

αk2
p

(
εm − εd

εmβm − εdβd

)
. (D.20)
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